Migration of PIP2 lipids on voltage-gated potassium channel surface influences channel deactivation
نویسندگان
چکیده
Published studies of lipid-protein interactions have mainly focused on lipid binding to an individual site of the protein. Here, we show that a lipid can migrate between different binding sites in a protein and this migration modulates protein function. Voltage-gated potassium (Kv) channels have several potential binding sites for phosphatidylinositol-4,5-bisphosphate (PIP2). Our molecular dynamics (MD) simulations on the KCNQ2 channel reveal that PIP2 preferentially binds to the S4-S5 linker when the channel is in the open state while maintains a certain probability of migrating to the S2-S3 linker. Guided by the MD results, electrophysiological experiments using KCNQ2, KCNQ1, and hERG channels show that the migration of PIP2 toward the S2-S3 linker controls the deactivation rate of the channel. The data suggest that PIP2 can migrate between different binding sites in Kv channels with significant impacts on channel deactivation, casting new insights into the dynamics and physiological functions of lipid-protein interactions.
منابع مشابه
PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels
Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucidate how the retigabine binding site is coupled to changes in voltage sensing, we used voltage-clamp ...
متن کاملBimodal regulation of an Elk subfamily K+ channel by phosphatidylinositol 4,5-bisphosphate
Phosphatidylinositol 4,5-bisphosphate (PIP2) regulates Shaker K+ channels and voltage-gated Ca2+ channels in a bimodal fashion by inhibiting voltage activation while stabilizing open channels. Bimodal regulation is conserved in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, but voltage activation is enhanced while the open channel state is destabilized. The proposed sites o...
متن کاملDesign of Novel Drugs (P3TZ, H2P3TZ, M2P3TZ, H4P3TZ and M4P3TZ) Based on Zonisamide for Autism Treatment by Binding to Potassium Voltage-gated Channel Subfamily D Member 2 (Kv4.2)
The present research article relates to the discovery of the novel drugs based on Zonisamide to treatment of autism disease. In first step, the electronic properties, reactivity and stability of the said compound are discussed. To attain these properties, the said molecular structure is optimized using B3LYP/6-311++G(d,p) level of theory at room temperature. The frontier molecular orbitals (FMO...
متن کاملPIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating
Voltage-gated potassium (Kv) channels contain voltage-sensing (VSD) and pore-gate (PGD) structural domains. During voltage-dependent gating, conformational changes in the two domains are coupled giving rise to voltage-dependent opening of the channel. In addition to membrane voltage, KCNQ (Kv7) channel opening requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Recent stud...
متن کاملFitting KV potassium channels into the PIP2 puzzle: Hille group connects dots between illustrious HH groups
In the August 2012 issue of the JGP, the Bertil Hille group continues its exploration of the physiological significance and cell signaling roles of PIP2 interactions with potassium channels. As we have come to expect, the group brings surprises and deep insights. In their article (Kruse et al., 2012), they have tackled the question of which voltage-gated potassium (KV) channels may be affected ...
متن کامل